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Abstract—The recent emergence of ultra high-speed networks
up to 100 Gbps has posed numerous challenges and led to
many investigations on efficient protocols to saturate 100 Gbps
links. Previous studies showed that RDMA over Converged
Ethernet (RoCE) is efficient in terms of CPU load and achievable
transfer bandwidth. However, end-to-end data transfers involve
many components, not only protocols, affecting overall transfer
performance. These components include a disk I/O subsystem,
additional computation associated with data streams, and net-
work adapter capacities. For example, achievable bandwidth by
RoCE may not be implementable if disk I/O or CPU becomes
a bottleneck in end-to-end data transfer. In this paper, we first
model all the system components involved in end-to-end data
transfer as a graph. We then formulate the problem whose
goal is to achieve maximum data transfer throughput using
parallel data flows. Our proposed formulations and solutions are
evaluated through experiments on the ESnet 100G testbed. The
experimental results show that our approach is several times
faster than Globus Online – 8x faster for datasets with many
10MB files and 4x faster for datasets with many 100MB files.

I. INTRODUCTION

Scientific workflows are getting more data-intensive since
technology advances such as sensor data resolution make
abundant data available for analysis. In addition, distributed
high-performance computing resources, such as supercomput-
ers, make data movement among geographically distributed
sites a major factor that should be taken into account for
efficient and reliable scientific workflow management. End-
to-end data transfers involve many components affecting the
overall transfer performance. Disk to disk data transfers start
with disk reads, go through data transfer over network, and
end up with disk writes. But the process is not simple. For
example, disk reads may involve multiple disks on which data
is distributed randomly or with some rules.

The recent emergence of high-speed network up to 100
Gbps poses considerable challenges and lead to many inves-
tigations on efficient protocols to saturate 100 Gbps links.
Previous studies have focused on tuning and benchmarking
various protocols to determine what protocols are suitable for
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ultra high-speed networks. Among those protocols, RoCE is
shown to be very efficient in terms of CPU load and achievable
transfer bandwidth.

However, reduced overhead obtained from network proto-
cols may not directly lead to overall end-to-end data transfer
performance gains. For example, for datasets with lots of
small files (which is the case for many scientific datasets [1]),
more time is spent exchanging control messages leading to
lower end-to-end throughput [2]. Smaller block size can also
seriously impact the performance. The common issue in these
two problems is that they increase CPU load and can be
improved by using more CPUs in parallel. Moreover, multiple
network interface cards (NICs) with different capabilities, such
as RoCE-capable NIC, can be exploited.

In this paper, we focus on optimizing CPU loads and
parallel flows in end-to-end data transfers. More specifically,
we show how the throughput for datasets with lots of small
files (LOSF) can be improved through optimizing the number
of parallel flows under constraints of CPU, disk I/O, and so
on. For many applications, the individual file sizes in the data
set are still small with respect to increasing bandwidth-delay
products even though the total volume of the datasets have
increased significantly in the past decade. For large files, the
approach of splitting a file into multiple chunk and transferring
the chunks simultaneously improve the performance. However,
the same approach does not work with small files, or even hurt
the performance. In this paper, we show that our approach
improves the performance significantly by optimizing parallel
data flows.

We first empirically evaluate the throughput and CPU
load depending on disk I/O and protocols. We model system
components using linear or quadratic regression model. We
then develop disk I/O flow and protocol scheduling algorithms
based on the developed models.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work. In Section III, we
describe the target system and associated challenges we are
facing. In Section IV, we describe the preliminary system
modeling for the optimization problem formulations and we
formulate the problem formally. Our proposed formulation
and solutions are evaluated through extensive experiments in
Section V. In Section VI, we summarize our work and briefly
discuss future work.



II. RELATED WORK

Recently many studies have been conducted on new 100G
high-speed networks. In [3], various data transfer middleware
such as GridFTP [4] and SRM [5] has been evaluated to
determine whether they can saturate a 100G network link. The
results in [3] show that they can achieve 80-90 Gbps in case
of memory-to-memory data transfer, where the system’s RAM
buffer cache is big enough to hold the entire dataset, so the
dataset is loaded into memory before data transfer.

Such performance improvements have resulted from sev-
eral research areas. First, the attempts to optimize network
protocols have brought enhanced network throughput. Globus
eXtensible Input/Output System (XIO) [6] provides a frame-
work on which applications do not have to care about what
protocols are best for the data transfer over the networks.
RDMA-based protocols have been evaluated compared with
common protocols such as TCP for high-performance data
transfers [7]. The results show that RDMA-based protocols
can achieve 10 Gbps data transfer with much lower operating
system overheads. In [8], efficient data transfer protocols
based on RDMA (e.g., RDMA-based ftp) has been proposed.
Another research area focuses on exploiting multiple flows
to achieve high-performance data transfer. GridFTP also use
pipelining [2] and concurrency [9], to offset protocol overhead
for small files, and recently it has been shown recently system
tools simply adapted for parallel file system I/O could achieve
much better performance [10].

However, because of the lack of a holistic approach to end-
to-end data transfer, achieving high-performance data transfer
is difficult in varying hardware and software environments.
End systems are becoming more and more complex and
heterogeneous. System hierarchy is becoming deep and com-
plex with multi-dimensional topologies. Applications must be
smart enough to take advantage of parallelism in various sub-
systems. So far, manual hardware and software tuning have
been needed in order to figure out what configurations are to
be set to meet the required data transfer rate. In this paper,
we address this problem by modeling system components in-
volved in data transfer and solving mathematically formulated
problems.

III. PROBLEM STATEMENT

In this section, we describe the target system and associated
challenges we are facing.
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Fig. 1. Overall system configuration

The overall system configuration we target throughout this
paper is depicted in Fig. 1. Two clusters of hosts are connected
through networks consisting of multiple domains. Any host

in one cluster can send data to any host in the other cluster
over the networks. One host has multiple CPU cores and is
connected to multiple disks. In addition, more than one NIC
may exist for utilizing multiple streams or different network
paths.

Figure 2 shows a more detailed system diagram. From the
perspective of one data flow, it starts from a storage, and it
arrives at a host on the other side after passing through CPUs
and being transferred over network paths. The data flow can
take different paths depending on which disk the data reside in,
what core is allocated for data processing, and what network
path is set up for transfer.
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Fig. 2. Detailed system components

As described in Section II, the issues posed by ultra high-
speed networks such as 100 Gbps networks are addressed
in three system components by using either parallelism or
optimized software stack. For disk I/O, coordinated parallel
disk streams help improve the data flow throughput. If CPU
computations are involved in data flows, allocating separate
CPU cores per data flow may help improve the performance.
For example, in case data encryption is additionally required
for secure data transfer, parallel computing associated with
parallel data flows will dramatically improve the throughput.
Data transfer over networks also requires sophisticated control
or protocol optimization.

However, addressing the throughput issues in each compo-
nent separately may lead to waste of unnecessary resources
and performance degradation since the bottleneck of three
components dominates the overall performance.

We propose data flow optimization algorithms to maximize
the throughput while taking into account any constraints inher-
ent in the system.

IV. END-TO-END TRANSFER OPTIMIZATION

In this section, we describe how to model system compo-
nents relevant to end-to-end data transfer and we formulate the
problem mathematically based on models.

A. System Modeling

In this section, we discuss how we can model each com-
ponent of the system so that we can develop optimization
formulations to solve.

The overall system can be modeled as a graph as shown
in Figure 3. In the graph, there are five classes of nodes, and
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Fig. 3. Data flow graph model

edges that link adjacent nodes. The five classes of nodes are
disk node, data channel, computation node, NIC , and logical
node. A node is not associated with any attribute, but an edge
is associated with attributes describing a node’s characteristics.
Data channel nodes reflect contention among data flows. For
example, if all disks are connected to only one disk interface
adapter, maximum disk throughput may not scale linearly as
the number of disks increases due to data contention. Logical
nodes are inserted for explicit data flow start and end in a
graph model. The CPU cores are not expressed explicitly as a
node but are put implicitly as costs on edges and constraints
in the resulting formulations.

Two attributes are assigned on an edge. One is capac-
ity/bandwidth of a source node. The other is cost of a data
flow on the edge. Both attributes can be either a constant value
or a function of some parameters originating from underlying
system behaviors. Depending on two end nodes linked by an
edge, it has different attributes. First, the edge linking from
a logical start node to a disk node, logical edge, is a logical
link with unlimited bandwidth and zero cost function. Second,
the edge linking from a disk or data channel node to any
other node, disk edge, represents a disk I/O path from a disk
or data channel. Third, the edge linking from a computation
node to an another computation node or a NIC node, compute
edge, represents a data flow going through computations such
as GridFTP and compression computation. Fourth, the edge
linking from a NIC node to a logical end node, network edge,
represents a network path from a source node to a destination
node. Each edge is associated with a bandwidth function and a
cost function. A bandwidth function and a cost function of an
edge describe the performance throughput and CPU resource
consumption of a source node, respectively. In the following
subsections, we describe each edge’s attributes and associated
modeling in details.

1) Disk modeling: Disk edge

Disk edge is associated with disk capacity/bandwidth and
CPU load related to disk I/O operations. Even though many
parameters such as disk cache size are involved in disk I/O
bandwidth, the number of data flows per disk is the most
important variable assuming that other parameters are fixed
and not adjustable.

Equation (1) computes utilization of a disk as a function of
number of processes and disk access probability [11]. Here p is
a ratio of request data size and the stripe size of a RAID disk. If
we assume that file size or request data is bigger than the stripe
size of a disk, p can be substituted by 1. The resulting equation

is U ! 1
1+ γ

L
, which means the disk utilization increases to

some extent as the number of processes increases. γ is a
constant to take into account other factors in disk performance
such as bloack size and disk cache.

U ! 1
1+ 1

L ( 1
p−1+γ)

U : Utilization
L : Number of processes issuing requests
p : Probability that a request will access a given disk
γ : Empirically calibrated value

(1)

The disk throughput can be determined by Equation (2)
in which the disk utilization in Equation 1 is multiplied by
N ·SU
E(S) . The equation can be rearranged as Equation (3) after

substituting N ·SU
E(S) by α

L , where α = N · SU , since E(S), the
expected service time of a given disk request, is proportional
to L. We can determine α and γ in Equation (3) through
experimental values. The cost function for the edge is assumed
to be zero since CPUs sit idle until a read/write operation
is done and any file operation overhead can be attributed to
computation nodes.

T = U ·N ·SU
E(S)

T : Throughput
U : Utilization
N : Number of disks in a RAID disk

SU : Stripe size
S : Service time of a given disk request

(2)

T = 1
1+ γ

L
· α
L = α

L+γ

α, γ : Empirically calibrated value
(3)

If the source node is data channel node, the disk edge
can be associated with this bandwidth function when the data
channel node has fan-in disk nodes, or can be associated with
infinity bandwidth when the data channel node has fan-out
nodes.

Equation (3) will be used as bandwidth function Bn
lk in

Section IV-B and approximated by a linear/quadratic function
for linear programming solver such as cplex [12].

2) Computation modeling: Compute edge

The edge whose source node is a computation node has at-
tributes of linear bandwidth and cost functions. The bandwidth
function is a function of the number of flows as in Equation
(4), and the cost function can be defined as in Equation (5).

T = αns + β
ns : Number of parallel data transfer streams
α,β : Empirically calibrated value

(4)

C(r) = αr
C(·) : CPU load
r : Data flow rate
α : Empirically calibrated value

(5)

Equation (4) and (5) will be used as bandwidth function
Bc

lk() and cost function Cc
lk(), respectively, in Section IV-B.



3) Network modeling: Network edge

The edge linking a NIC node and a logical destination node
has attributes of a throughput function and a cost function. In
order to simplify the problem, only TCP is considered and
a NIC is assumed to have a preassigned protocol property
associated with corresponding throughput function.

Several throughput models for parallel TCP streams have
been proposed to predict the performance. The simplest model
is proposed in [13] and given by Equation (6).

T ≤ min{NC, MSS×c
RTT · nt√

p}
T : Achievable throughput
NC : Capacity of NIC
MSS : Maximum segment size
RTT : Round trip time
p : Packet loss rate
nt : Number of parallel data transfer streams

(6)

Since MSS×c
RTT · 1√

p is a constant, Equation (6) can be
rearranged as α · nt where α = MSS×c

RTT · 1√
p .

The cost function for TCP is given by Equation (7).

C(r) = αr
C : CPU load
r : Data flow rate
α : Empirically calibrated value

(7)

Equation (6) will be used as bandwidth function Bn
lk, and

Equation (7) will be used as cost function Cp
lk in Section IV-B.

B. Problem Formulation

In order to simplify the problem, the following assumptions
are made:

• There is only one machine at each end. (Cluster-level
modeling and formulation will be future work)

• There is a dedicated network path between the sender
and the receiver machine.

• The data rates of all parallel data flows are same.
This means that the total data rate (and data I/O
load) is evenly distributed over current parallel flows.
Even though disks attached to the machine may have
slightly different capacities, we assume homogeneous
disk resources in this paper.

• A sender and a receiver have similar hardware such
that optimization on the sender side is sufficient for
end-to-end data transfer optimization.

• Number of parallel transport protocol (TCP/RoCE)
flows can be greater thanthe number of parallel data
flows from disks.

The last assumption means that the system can automatically
adjust the number of network transfer streams if one network
transfer stream is not enough, in order to accommodate output
data rate from computation nodes. For example, GridFTP [4]
use multiple logical TCP flows, called parallelism, per one
data stream to overcome the limitation of TCP protocol in
high-bandwidth high-latency networks.

The overall problem-solving procedure is as follows.

• Compute parameters of capacity functions based on
empirical data.

• Formulate the modified multicommodity flow problem
based on the capacity/cost functions on edges.

• Find a solution including the number of parallel flows,
the number of required CPUs, and the number of NICs
using linear programming solver, cplex [12].

• Determine the number of parallel TCP/RoCE flows
based on the amount of flows on network edges.

The graph model as in Figure 4 can be formally represented
by a graph G = (V,E), where V is a set of vertices, and E
is a set of edges.

Table I gives a list of notations for mathematical formula-
tions, and the complete formulation is described in Fig. 5. The
formulation in Fig. 5 is mixed-integer convex programming
(MICP) since ns, the number of data streams, is integer
and bandwidth function Bd

lk is approximated by quadratic
functions.

The objective function is given in Expression (8), which
is to maximize overall throughput of data transfer. Expression
(10) set the range of the number of data streams per disk.
Expression (11) is a bandwidth/capacity constraint on the
edges, where rlk denotes data rate on an edge (l, k) and
bandwidth functions is chosen depending on the edge type. The
flow conservation constraint given by Equation (12) ensures
that the sum of incoming data rates should be same as that
of outgoing data rates at every node. In special cases such as
compression computation, the sum of outgoing data rates can
be a fraction of that of incoming data rates. Expression (13)
and (14) constrain the total outgoing data rates from the logical
source and to the logical destination node to be greater than or
equal to T , which is to be maximized. In this way, we can get
the solution that maximizes the overall data throughput. The
computation constraints by the number of CPU cores in the
system and the number of data flows is given by Expression
(15). Note that the formulation assume a circumstance where
the number of data flows per disk is same, but the formulation
can be easily extended to reflect different number of data flows
per disk by assigning separate variables per disk.

V. EXPERIMENTAL EVALUATION

We have conducted experiments on an ESnet 100G testbed
in two locations: NERSC (Oakland, CA) and Argonne (near
Chicago, IL). Fig. 6 shows the detailed configuration of
the testbed. At NERSC, there are 5 hosts of three different
hardware configurations. We have used either nersc-diskpt-1
or nersc-diskpt-2, which have Intel Xeon Nehalem E5650 (2
x 6 = 12 cores), multiple 10G NICs, and 4 RAID 0 sets of
4 drives. On the other hand, there are 3 hosts without disk
arrays at Argonne. Likewise, we have used one host out of 3
hosts at Argonne. These hosts have 2 AMD 6140 (2 x 8 = 16
cores) and multiple 10G NICs, but do not have RAID disks.
However, the host at Argonne has only local disk, which is
slow (i.e. 300MB/s) and thus can not saturate a 10G link. For
such reasons, we conducted disk to memory tests where all
data flows arriving at the host at Argonne will be directed to
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Fig. 4. NERSC host graph model

TABLE I. NOTATION FOR PROBLEM FORMULATION

Notation Description
Vs Logical source node
Vd Logical destination node
Nd Number of disks
Nc Number of CPU cores
ns Number of data streams per each disk; integer variable
nt
lk Number of parallel TCP streams on an edge (l, k)

rlk Data rate on an edge (l, k)
Bd

lk(ns) Disk capacity/bandwidth of Vl, a disk node, associated with an edge (l, k)
Bc

lk(ns) Computation capacity of Vl, a computation node, associated with an edge (l, k)
Bn

lk(nt) Maximum network capacity/bandwidth of Vl, a NIC node, associated with an edge (l, k)
Cc

lk(rlk) CPU/Computation cost of Vl, a computation node, associated with an edge (l, k)
Cp

lk(rlk) CPU/Computation cost related to network protocol on Vl, a NIC node, associated with an edge (l, k)

Objective
maximize T (8)

Subject to:
rlk ≥ 0, (l, k) ∈ E (9)
0 ≤ ns ≤ Ms,Ms is maximum number of data streams.

(10)

rlk ≤






Bd
lk(ns), (l, k) ∈ E, if Vl is a disk node

Bc
lk(ns), (l, k) ∈ E, if Vl is a computation node

Bn
lk(nt), (l, k) ∈ E, if Vl is a NIC node

(11)
∑

k:(l,k)∈E

rlk − c
∑

k:(k,l)∈E

rkl = 0,

l &= sj , l &= dj , c =

{
compression ratio, if l is compression node

1, otherwise
(12)

∑

k:(s,k)∈E

rsk −
∑

k:(k,s)∈E

rks ≥ T (13)

∑

k:(k,d)∈E

rks −
∑

k:(d,k)∈E

rdk ≥ T (14)

∑

k:(l,k)∈E

C(rlk) ≤ min (Nc × 100, ns ×Nd × 100) (15)

Fig. 5. Multiple flow determination algorithm

/dev/nulll or nullfs, and we assume that the host at Argonne
has same hardware performance as that of the NERSC host.

We have chosen lots of small files (LOSF) dataset as an
exemplary dataset for our and focus on optimizing the end-
to-end data transfer rates for LOSF datasets. We use three

Fig. 6. ESnet 100G testbed

different datasets – one with ten thousand of 1 MB files, one
with one thousand 10 MB files and one with one hundred 100
MB files, such that total amount of data would be 10 GB.
The files were synthetically generated using /dev/urandom in
Linux.

To measure the disk performance, we use dd and iozone
as disk I/O benchmark tools. In addition, we use nmon and
netperf as benchmark tools to measure CPU load and network
performance, respectively.

A. Subsystem Tests for Model Parameter Setting

We first conducted basic disk I/O performance tests using
dd disk utility to obtain baseline performance of disk through-
puts. Fig. 7 shows the disk read throughputs of 4 RAID sets
attached to hosts at NERSC, and. The theoretical upper limits
of each RAID disk is around 1.2 GB/s since the RAID disk
is composed of four disks with 300 MB/s read performance.



Even though there are performance variances among disks, we
ignore the variances for simplicity in this paper.
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Next, we measured the multithread disk read performance
depending on file size and the number of threads to determine
the value of α, γ in Equation (3). Fig. 8 shows that disk
throughput decreases as the number of streams increases and is
irrelevant to the file size. We conducted experiments in case of
sequential disk read. Equation (3) determined by these results
would be Bd

lk(·) in Fig. 5 where L equals ns and l is a disk
node.
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Fig. 8. Disk throughput at NERSC using iozone: decreasing disk throughput
with increasing number of data streams

However, as Fig. 9 shows, the aggregate disk throughput
using multiple disks does not scale linearly due to channel con-
tention. We model the channel contention using a data channel
node and associated bandwidth function, as in Equation, 3.

Next, we measured application throughput while varying
the number of data streams. Even though the data movement
tool GridFTP is the only application used for the end-to-end
data transfers, we measured tar application throughput as well
as GridFTP to help better understand characteristics of appli-
cation throughput. The application throughput characteristics
of GridFTP is described in Section V-B. Fig. 10 shows how
tar application throughput is affected by the number of data
flows. Apparently, as seen in Fig. 10, in the case of 1 MB files,
its throughput is increasing as a function of ns, the number
of data flows. This behavior can be modeled by Equation (4)
based on linear regression model or nonlinear functions such
as quadratic functions. Even though we chose to use linear
regression for simplicity in this paper, the nonlinear function
can also be used as long as mixed-integer convex programming
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Fig. 9. Multiple disk throughput at NERSC using iozone: increased
throughput using multiple disks, but slightly under the total sum of individual
disks

(MICP) solvers can find a solution within a reasonable time.
The behavior for 10 MB files in tar application can not model
by Equation (4), but it is only because the disk throughput is
limited by around 500MB/s, and tar throughput hit the limit
when the number of data flows is greater than 1. In this case,
we need to replace the disk by a high-end disk or memory
in order to measure the application throughput accurately, and
will get linear model as for 10 MB, too.

!"

#"

$!"

$#"

%!"

%#"

!" $!!" %!!" &!!" '!!" #!!"

!"
#
$%
&'

($
)*

+$

,'-'$.'-/$)0123+$

$"()"

$!"()"

Fig. 10. Application throughput (tar): increasing throughput with increasing
number of data streams until disk throughput becomes a bottleneck

Fig. 11 shows how tar application CPU load is affected
by the processed data rate. The experimental results of 1 MB
files and 10 MB files are plotted with the x-axis as data rate
and the y-axis as CPU load. In the case of 10 MB, redundant
data have been removed for plotting. Regardless of file size,
we can see that CPU load is increasing as a function of r, data
rate, and can also be approximately by Equation (5) based on
linear regression model. In a similar way, we can model any
applications including GridFTP and compression.

Regarding network edges, Fig. 12 and 13 show the through-
put and CPU load of TCP protocol, respectively. These TCP
performance results are measured by netperf, and memory-to-
memory transfer over a 10G NIC. Fig. 12 shows that network
transfer throughput is saturated with 3 TCP streams and is near
the full capacity of the 10G NIC. Obviously, these protocol
behaviors can be modeled by Equation (6) and (7).
B. End-to-End Tests

The end-to-end data transfer results using GridFTP are
shown in Fig. 14 and 15. To eliminate the disk bottleneck
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constraints on hosts at Argonne, we performed disk-to-memory
data transfer experiments. The symbolic link files linked to
/dev/null, which correspond to names of files to be transferred,
are generated in advance. GridFTP provides 4 types of options
for data transfer optimization: (1) -cc: concurrent FTP connec-
tions, (2) -p: number of parallel data connections, (3) -pipeline:
optimization to hide control message exchange latency in
case of multi-file ftp transfers, and (4) -fast: fast directory
listing and data channel reuse. In this experiment, we use
only the -fast option since the other options are related to the
number of data streams to be determined by our optimization
formulations. -cc specifies the number of threads to read files
from disks when transferring multiple files. -p and -pipeline

do not relate to the number of threads, but to the number of
connections and the overhead in control message exchanges.
Fig. 14 shows that the throughputs of 1 MB/10 MB files using
single disk increase up to 8 data flows while 100 MB files
is saturated at 2 data flows and even declines as the number
of data flows grows. That is obviously due to disk throughput
limit and disk throughput degradation with the bigger number
of data flows, as shown in Fig. 8.
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Fig. 14. GridFTP throughput: increasing throughput until disk throughput or
data contention among multiple data streams becomes a bottle

In the case of multiple disks, its throughput could increase
up to 1.2 GB at 4 data flows in case of 100 MB files as in
Fig. 15. The maximum throughput is limited by a capacity of
10 Gbps NIC and may be improved by multiple NICs.
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Fig. 15. Multiple disk GridFTP throughput: increased throughput using
multiple disks

C. Results and Discussion

We have compared our model-based optimization approach
with three cases: (1) GridFTP with only -fast option, (2)
GridFTP with auto-tuning optimizations currently used by
Globus Online [14], and (3) Best GridFTP results obtained
using manual tuning. Globus Online’s auto-tuning algortihm
uses different GridFTP optimization options depending on file
size. If the number of files is more than 100 and an average file
size smaller than 50 MB, it uses GridFTP with concurrency=2
files, parallelism=2 sockets per file, and pipelining=20 requests
outstanding at once. If file size is larger than 250 MB, Globus
Online uses options of concurrency=2, parallelism=8, and



pipelining=5. In all other cases, the default setting is used:
concurrency=2, parallelism=4, and pipelining=10. Since our
file size ranges from 1 MB to 100 MB, we use the options for
<50 MB and the default case.
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Fig. 16. Throughput Comparison

Globus Online outperforms the naive GridFTP especially in
case of 1 MB and 100 MB. The performance obtained using
the optimization values predicted by our model is as good
as or close to the best results obtained with manual tuning.
Of course, manual tuning involves trial and error and is time
consuming and tedious. The best result with manual tuning and
our model-based results are roughly 8 times and 4 times faster
than Globus Online in case of 10 MB files and 100 MB files,
respectively. It is mainly because our model can effectively
identify the number of data flows based on disk throughput
performance models. With -cc=2 options, Globus Online can
only utilize only two data streams from disks, which has a
lot room for improvement, and cannot utilize the advantages
of multiple disks. Based on models, our formulation in Fig.
5 could find the proper number of data flows, 8, 6, and 3 in
the case of 1 MB, 10 MB, and 100 MB files, respectively,
while the best results come from 16, 8, and 4. In addition, our
formulation could find a solution suggesting using 2 NICs in
case of 100m files. The experimental results in Fig. 15 shows
that the overall throughput is stalled when the number of data
flows per disks are 4. But this is due to a bottleneck in 10G
network links, and the formulation could successfully find the
solution using multiple NICs to achieve maximum throughput.

The advantages of using model-based optimization formu-
lations are as follows: (1) it can suggest the future hardware
plan optimized for overall data transfer throughput just by
simulating different configurations of hardware as well as soft-
ware, (2) it can be used by systems such as Globus Online and
other intelligent data transfer managers to adaptively optimize
transfers for varying CPU resource availability and network
status, and (3) it can provide basic models for simulating bulk
data movement in next generationn networks.

VI. CONCLUSIONS

We first model all the system components involved in end-
to-end data transfer as a graph. We then formulate the problem
whose goal is to achieve maximum data transfer throughput
using parallel data flows. Our proposed formulations and solu-
tions are evaluated through experiments on the ESnet testbed.

The experimental results show that our approach is several
times faster than Globus Online 8x faster for datasets with
many 10MB files and 4x faster for datasets with many 100MB
files. Our models and formulations are extensible to more
complex cases such as more deep software stacks and more
complex system architectures (e.g., cluster). Accordingly, we
will continue our research toward cluster-wide session control
and weighted CPU scheduler based on parameters determined
by optimization formulation.
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